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INVERSE PROBLEMS IN THE DYNAMICS OF PARABOLIC SYSTEMS* 

A.V. KIM, A.I. KOROTKII and YU.S. OSIPOV 

In the context of an approach to inverse problems of dynamics /l, 2/, 
regularizing finite-stepped dynamical algorithms are proposed to 
determine the sources of disturbances in processes described by evolution 
equations. 

I. Statement of the probhn. We will begin with an intuitive description. Suppose that 
sources of a certain material are distributed in a domain f2; their positions and strengths 
are unknown. The propagation of the material is observed for a certain time T = [t,,6) and 
at certain times tin T, i = O,l, . . ..a~. the concentration of the material in the domain, rep- 
resented by a scalar function Y (II, z), 2,~ B, is measured. The result of the measurement 
is a quantity g(ti,z),zE66, which satisfies a mean-square estimate 

An algorithm will be constructed which, during the process (on a real-time basis), 
utilizes the incoming information about the concentration of material to determine lan 
approximation to) the positions and strengths of the sources. The algorithm is regularizing 
in the sense that the output delivered may be improved by reducing the measurement errors and 
measuring the concentration at more frequent intervals. 

The problem may be formulated rigorously as follows. Let us assume that at a time t<Z T 
the sources are concentrated in some unknown set G(~)c 9. The strength of a source at a 
point XCZQ at time ~cZ T is defined by a scalar quantity f(t. I), of which only an a 
priori estimate &< f(t,x)< &, TV T, SE $2, is known, where f& = coust > 0, & = const 3: &. 
The sets 

S = {(t, 2): t E T, z E G (t)), G (t) (t E T) 

and function f are assumed to be Lebesgue-measurable. The dynamics of the process is described 
by the boundary-value problem 

dYlat= 2% (if Y + XG(1) (@f (t, rjin Q = T x Q 
u,ayiarf f 0,~ = 0 on z = T x r 

Y (to, 2) = y, (I) in Q 

(1.1) 

Here 6a is a bounded open connected set in Euclidean space R” (n >I) with piecewise 
smooth boundary I? (for the sequel it will suffice to assume that B is strictly Lipschitsian 
14, p.301; XB 1.) is the characteristic function of a set B C Q: x0(r) = 1 if IEB and 

xii (4 = 0 if xq$B; a~/a~ is the outward conormal derivative; (I$ and us are non-negative 
numbers, *1 + 0, > 0; L,(Q) 3 PO is the initial distribution (at time t = t,,) of the eoncen- 
tration of the material over 62; A (t) is a coercive linear selfadjoint elliptic operator 

wy= 2 ~~4,~t4~j-a~t,x~y i, 1=1 

With the parameters subjected to these restrictions, there exists a unique generalized 
solution y = y(t, x), tf T, SE P, to the boundary-value problem (l.l), and it is an element of 
the space V&"(Q) /5/. 

Let (Q*, d) denote the semimetric space defined by letting Q* by the set of all Lebesgue- 
measurable subsets of 8 and d the semimetric d (E,, Ee) = mes (E,AE,), where E,AE, is the 
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symmetric distance of the sets E, and E, and mes denotes Lebesgue measure in I<"+' 

Let P be the convex bounded closed subset of f,?(Q) which contains all possible elements 
xsg, where B may be any Lebesgue-measurable subset of Q and g any function in Lz. (Q) 
such that, for almost all IEP, P1 Q g (4 :_I pz. Any finite family (r&,,..,,,,,. where 
t, = T" < . . . < Tn, = $,will be called a partition of 2'. 

The problem is to design an algorithm which will generate an approximation to the set 
S and function f, on the assumption that at every instant of time tc T the concentration 
of material Y(i)= Y(t, .) in p can be measured, and the result of the measurement 5 (1) = 
5 (k .) is related to Y(t) through the inequality 

II % (4 - Y (4 IlW) < 1) (I.') 

A solution to this problem will be sought in the class of finite-stepped dynamical 
algorithms (FDAs) /2/. By a FDA we mean any triple 

D =((&z-o....,ni; (r&O ,.... !I?-1; (Pi)i -0 ,..., m-1) (1.3) 

where m is a natural number, (?r)i=a....,r,i a partition of T. ri is a map of L,(B) X L,(Q) into 
P, and p1 is a map of L,(B) X L,(Q) into L, (a), i = 0, . . ., m- 1. For every FDA (1.3) 
and function %: I'+ &(a), we define a (D, %)-realization to be a pair of elements (u, E)E 

4 (I'; 4 (8)) X o*, formed by the following rule: u (t) = rl (% (T,), q) for t E [zi, z;+r) and 
i=o,..., m - I, 2 (to) = 5 (to). zi41 = Pi (E (rt). zf) for i=O, . . . . m - I, E = {(t, 5) E T x 9: 
U (k .2) p,iZ}. The function % will be called the input to the algorithm and a (D, %)-realiz- 
ation its output. 

The FDA operates as follows with elapsing time. Before the starting time t, it selects 
and records a partition (T+)<~O,....n,, each point of which T, will serve as the starting time 
of the next step (cycle) of the computation. At time f. = z,, i = 0. . . .,m - 1, the algorithm 
receives information % (t,) (the measured value of the function Y(q)); on the basis of 
this information and the value zI of the auxiliary variable z (zO = % (to)) up to time t = T&l, 

the algorithm determines a new value zj+r of the auxiliary variable according to the rule p,, 
an element ui = rl (% (zi),zJ) E P according to the rule ri t and a set 4 = Iq, zf+r) x {z E a: 
ui (4 > W). Up to the terminal time 6 the algorithm computes a (D, %)-realization (u, E): 
u (t) = IL* for t E IT*, q+r) and i=o, . ..( m - 1, E = E,lJ.. . UE,,-I. The set E is the 
required approximation to S, and the function u to f. 

Let 5, (11 > 0) denote the set of all functions 5: 1’ + L, (Q) which satisfy (1.2) for 
all t EZ T. A family of FDAs (D,,),,,,, is said to be regularizing if, for any e>O there 
exists 6>. 0 such that for every h E (0. 6) and any function % E F,, the (D, %) -realiz- 
ation (u, E) satisfies the inequalities 

11 11 - I IIf., < p. d (E, S) < s 

A function Y: 10. y)+ [0,x) is called an accuracy for the family @,,)I,>, if, for any 
I/ > 0 and %E Z1,, 

II u - I II/>,(s) < y W), d (E, S) < v (/I), 

where (n, E) is a (D,,, %)-realization. A family of FDAs (D&,0 is regularizing if and 
only if it has an accuracy v (.) and moreover Y (A)+ 0 as h-t 0. Obviously, a regularizing 
family FDA provides a solution to the problem as formulated above. It will be used to solve 
our reconstruction problem in the following way. Given a preassigned error h, choose a 
suitable FDA D, from the family and use it to determine the positions and strengths of the 
sources (the operation of any such algorithm was described above). OW construction guarantees 
that, the smaller h, the more accurately will the (o,,, %) -realization (u, E) delivered at 
the output of the algorithm approximate the pair (I? S) in the sense of the metric of the 
space L, (S) x Q*. 

2. The construction of (I reguhrizing famii& of FDAs. Underlying the following con- 
struction of a regularizing family of FDAs are certain ideas from /I, 2/. Define a family 
of FDAs (D,r),,>D by the conditions: 

D,, = ((q”)i=o, nt: (r*“)i=a / m,,-1; p, ( !I). t--u. , nlh-l ) (2.1) 

where for any h> 0, i = 0, . ., mh - 1, % E L, (a), z E L, (8) the element rib (%, z) is a minimum 
point of the quadratic functional 

@ (u) = 209 - 5, u>L*(n, + a (A) II n IE,cn, 

on the set P (such a point exists and is unique), P: (E, z) = (0 (&,), where w is a general- 
ized solution in the space Vi,"([t:, ~f+r] X 61) of the boundary-value problem 

Bwl& = A (t) w I- I.~‘# (E, z) in lath, r~_,l x Q (2.2) 

o,awl~3N + 0%~ = 0 on [r:, ti+:,I x I' 

w (tt) = z inQ 
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Here a: [O, x7)-+ [O, CO) is some fixed auxiliary function. 

Theorem 2.1. Let the function a and the quantity A (h) = max {z!+r - rsh:.i = 0, . . ., 
mh - 11 be such that a (h)+ 0, A (h)+ 0, h/a (h)+O, vm(h)/a (h)+ 0 as h-+0. Then there 
exists h,> 0 such that for any he (II, h,) , the sets E,, in the (&, %) -realizations 

bh, Eh) are not empty and the family of FDAs (2.1) is regularizing. 
Note that a(h) and A (h) which satisfy the conditions of Theorem 3.1 may indeed be 

chosen: it is sufficient for example, to define a (h) =hv (0 < 7 < 1), A (h) = h3v. The proof 
of Theorem 2.1 is analogous to the proofs of the corresponding propositions in /2, 3/, being 
based on the following facts: 

1) if u E I+ (Q), B E Q*, E = {(t, Z)E T x 52: u (t, z) > p,/Z), then 

2) if &)c (0, OO), {%r}, {(Us, Er)) are sequences such that hr + 0, %ti E 5. (z+, Ek) are 

(Dh., Sk)-realizations (Pr = E,,, D, = D, for h = h,, li = 1, 2, . .), then under the assumptions 
of Theorem 2.1 

II uh- - xs fllr.,co, - 0, d (E,, S) - 0 

We will now provide an intuitive description of the sequence of operations to be per- 
formed when reconstructing the sources and their strengths in accordance with Theorem 2.1. 

One first selects a (h), A (h) and partitions (T?)~=o,...,~~~ such that a (h) - 0, A (h)+ 0, 

/da (h)+ O,l/A (h)ia (h)+ 0 as IL+O. On receiving (before a time t,,) a value for the error 

k, it is recorded, as are the value of a (h) and the partition (tih)i+,,,.,,,,,,, of 2'. Beginning 

at time t,, in each of the time intervals [z,", ?:!+r), i = 0, . . . . m,, - 1 in succession, the 

values ui of the auxiliary function u are computed (U (t) = Ui for t E lzth, tL1) and i = 0, 
.( m/C - I), the part Ei of the "trajectory" of source positions E (E = E, u . . . u E,, 

k = m,,-- 1) is determined, the values of the auxiliary variable z are recalculated, replacing 

zi with z;.r, according to the rules: ui is the minimum point on p of the quadratic func- 

tional 

where w is the solution of the boundary-value problem (2.2) with z = Zi and 
(we define z,, = % (to)). When this is done, 

rll' (E, 2) = U1 
u will approximate fu in the metric of Lz (Oh 

and E will approximate S in the semimetric d. 

3. Estimate of the (ICCWQC~ of a FDA. We now describe one modification of the family 
of FDAs (2-l), (2.2) and exhibit the form of the appropriate accuracy Y. The new family of 
FDAs is defined in the same way as the family (2.1), (2.2), but so as to satisfy the condition 

G+, 
w(~:+l) = z t s [A(T)% I ri”(%, z)]dz (3.1) 

Tih 

Put V = we*(Q) n +sl(Q) if c1 = 0, V = Wza(Q) if u1 # 0. 

Condition 3.1. 1) For every TV T the operator A (t) is linear and bounded from V 
to L, (Q), and the norms of these operators are uniformly bounded, i.e., there exists a 
number co > 0 such that for every tET one has II A (t) lb-~,(~) < co; 2) the solution of 

the boundary-value problem (1.1) is uniformly continuous as a map T+ V, i.e., there exists 
a function o:lO,m)+ [O,oo) such that a(t)-+ 0 as 1-+ 0 and II Y (G) - Y (GJ IlvQ 0 (I 4 - h I) 
for any t,, t,E T; 3) at every TV T the measurement % (t)~ V and current state y(t) of 
system (1.1) satisfy the inequality II E(t) - Y (ti lb <k 4) the function v:Tst+ XC(t)(‘)/ (t, 
.)E L,(Q) has a bounded variation on T. 

Let 
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where y is a positive number, determined from the known parameters of the boundary-value 
problem (l.l), such that for any h> 0, t E T, g,~ 3, 

1 = .I b), YP = max {II u llb,(~): u E 1’) 

e (h) = h” + (t3 - t”) y (h + I/a, 
6 (h) = I& (h) +- %a (h) (6 - to) yg]“* 

where (z&E) is a (Dh,E)-realization, E (t) = & (r)) for t E [zrh, dr), i = 0, . ., mh - 1. 

Theorem 3.1. If Condition 3.1 is satisfied the accuracy Y of the family of FDAs (2.1), 
(3.1) has the form 

Y (A) = Ie (h)ia (h) -t 2 (var u -F- y,,)(6 (h) + c0 (6 - t&h + o (A @)))I';* 

and v(h)-+O, if a(h)-+O, A(h)+O, h/a(h)+O, Irm,a(h)-+O as h-to. 
The proof of Theorem 3.1 is analogous to that of the parallel fact in /6/. Parts 1 and 

2 of Condition 3.1 are satisfied for regular domains Q and operators A (t) with sufficiently 
smooth coefficients (see, e.g., /4, Chap.3, Sects.8, 9/; /5, Chap.3, Sect.6/), while parts 3 
and 4 impose restrictions on the current measurements of the state of the system and the way 
in which the sources may vary. 

4. &narks. 1”. The family of FDAs (2.1) may also be used to determine sources when the 
minimum of the functional 0(a) and values of the maps pJh are computed with certain errors. 
For example, instead of the exact values of r,h (5, 2) and pJh(E,z) one might use approximations 

i,h (E, 2) and p,h(E.z), provided that these satisfy the inequalities 

I Q 0 (5, 2)) - 0 (FP (5, 2)) I s % (h) (*+I - Ti”) 

IIPI” (E. 4 - Plh 6 4 I!,@) ,-- XI @) cd+l - 71”) 

where x, and xt are certain fixed auxiliary functions lo, OO)- lo, 30) such that x1 (h) + 0 and 
x,(h) + 0 as h- 0. Under these conditions the family of FDAs (2.1) is still regularizing 
if, in addition to the conventions from Theorem 2.1, one also imposes coordination conditions 
such as ~1 (N/o(h) - 0 and xz (/~)/a (h) + 0 as h - 0. 

20. Similar techniques can be used to reconstruct sources on the basis of points measure- 
ments of the concentration in C. Indeed, suppose that a suitable grid is imposed on 12, 
dividing it into disjoint cells @,(=I, and that at successive instants of time tf T the 
concentrations are measured at various points z,sRi, iczl. the results being scalar guantities 
EJ (0, i E 1, such that 

If*(+&S I 
#(t. z)dr <h, 1 E T, i E 1 

5 

Let E (t) = E (t,.) denote a step function interpolating the grid function El(t), i=f, 
in 0: f (t, .z) = Ei (t) if 5 E R, and ~EI. We have 

115 (0 - Y (0 IIL*(Q) < c @ + P (Xl)? LET, c=const>O 

where x is the mesh of the partition of R, JI is some function IO, m) + IO, m) such that 
,p(x)+O as x-O(c and u are determined from the known parameters of problem (2.1)). Then 
the family of FDAs (2.1) is still regularizing, provided that the function E (1, .J is taken 
as the result of measuring the concentration ~((t,.) at time tE T, and besides the conditions 
of Theorem 2.1 it is also assumed that 

X (h) - 0, P (x (h)Jla (h) - 0 as h - 0. 

39. Let us see how to go about the reconstruction of sources in the Hausdorff metric. 
The following assertion is true: if (I,,, EJ,) is a (DJ,,E)-realization and as h-0 one has 
% - XC(.) f (*) in the supnorm, then E,,- S in the Hausdorff metric. With suitable assumptions, 
the set of realizations (J+) may prove to be precompact in C(Q), and then, if the realiz- 
ations are convergent in L,(Q), they are uniformly convergent. 

40. Analogous results have been obtained for certain classes of quasilinear parabolic 
systems, described by the equations 
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5”. The algorithms obtained above may also be modified to determine the sources on the 
boundary: 

0, aY/aN + %Y = Xp(t) g ct* 5) 

where P(t), TV T, are the unknown positions of the sources on the boundary, g (t, 2). ct. .e) E r, , 
is the unknown strength of the sources. 

5. &umpZe. Let us consider the problem of reconstructing the distribution of sources 
in a two-dimensional domain O=(O,&) x (0,i) o , assuming that the dynamical process is governed 
by the boundary-value problem 

aY @Y 
7&- -= a -a;& + *a-!-X&&z) in Q 

Numerical computations have been carried out for various parameter values and configur- 
ations of the sets G(t), tE T. The evolution of the dynamical system and of the auxiliary 
model were implemented by means of an explicit difference scheme with uniform time step-size 
and uniform spatial mesh along the z, and z* axes. The simulation shows that as early as 
the second or third step one begins to get a stable picture of the reconstructed source 
positions. The required set is determined by rectangles with centres at the mesh points and 
sides equal to the mesh lengths in the 5, and xg directions. 
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